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1. Field Extensions

Definition 1. A field extension E/F consists of a field E which contains a field
F . We call F the base field of the extension.

For example, C/R, C/Q, and R/Q are field extensions.

Definition 2. Let E/F be a field extension and let A ⊂ E.
The subring of E generated by F ∪ A is denoted F [A]. This is the intersection

of all subrings of E which contain F and A.
The subfield of E generated by F ∪A is denoted F (A). This is the intersection

of all subfields of E which contains F and A. Extend this notation as follows:
• If A = {β} is a singleton, we may write F [β] to mean F [A];
• If A = {β} is a singleton, we may write F (β) to mean F (A);
• If A = {β1, . . . βr} is finite, we may write F [β1, . . . , βr] to mean F [A];
• If A = {β1, . . . βr} is finite, we may write F (β1, . . . , βr) to mean F (A).

For example Q[
√

2] = {a+ b
√

2}. In this case, Q(
√

2) = Q[
√

2]. Also, Q[
√

2]/Q
is a field extension.

If E/F is a field extension and β ∈ E, then

F [β] = {f(β) | f ∈ F [x]}.
Definition 3. The degree of the extension E/F , denoted [E : F ], is the dimension
of E as a vector space over F .

For example, [Q[
√

2] : Q] = 2.

Proposition 1. Let F ⊂ K ⊂ E be fields. Then
(a) [K : F ] = 1 if and only if K = F .
(b) [K : F ] = [E : F ] if and only if K = E.

Definition 4. Let E be a field which contains a field F .
We say that f ∈ F [x] annihilates β ∈ E is f(β) = 0.
We say that β ∈ E is algebraic over F if f(β) = 0 for some nonzero f ∈ F [x].
We say that β ∈ E is transcendental over F if it is not algebraic over F . In this

case, the only polynomial which annihilates β is the zero polynomial.

Typically, if the base field F is not specifically mentioned, it is assumed to be
Q. For example,

√
2 and 3

√
2 +

√
5 are algebraic, but Hadlock shows (§1.7) that

π is transcendental. It is also known that e is transcendental, and in fact, the
cardinality of the transcendental numbers exceeds that of the algebraic numbers.
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2. Minimum Polynomials

Proposition 2. Let E/F be a field extension and let β ∈ E be algebraic over F .
Then there exists a unique monic polynomial f ∈ F [x] of minimal degree which
annihilates β. Every nonzero polynomial which annihilates β is a multiple of f .

Proof. Let

D = {d ∈ Z | d = deg(f) for some nonzero f ∈ F [x] with f(β) = 0}.
Since β is algebraic, D is a nonempty set of positive integers, and so has a minimum
element, say d. Let f ∈ F [x] with d = deg(f) and f(β) = 0.

Recall that a polynomial is monic if the leading coefficient is one. If we divide
by the leading coefficient of f , we obtain a polynomial which is monic and still has
β as a root; thus we may assume that f is monic. Thus, f is a monic polynomial
of minimal degree which annihilates β.

To show that any other polynomial which annihilates β is a multiple of f , suppose
that g ∈ F [x] with g(β) = 0. By the division algorithm, g = fq + r for some
q, r ∈ F [x], where deg(r) < deg(f). Then

0 = g(β) = f(β)q(β) + r(β) = 0 + r(β) = r(β);

thus r(β) = 0, and since f has minimal degree among nonzero polynomials which
have β as a root, we must have r = 0. Then g = fq.

To show that f is unique, suppose that g is another monic polynomial of minimal
degree which annihilates β. Then g is a multiple of f , so g = fq for some q. But
since deg(f) = deg(g), we must have deg(q) = 0, so q is a constant. Since f is
monic, the leading coefficient of g = fq is q; now since g is monic, we must have
q = 1. Thus g = f . �

Definition 5. Let E/F be a field extension and let β ∈ E be algebraic over F .
The minimum polynomial of β over F , denoted min(β/F ), is the unique monic

polynomial of minimal degree which annihilates β.
The degree of β over F , denoted deg(β/F ), is the degree of min(β/F ).

Proposition 3. Let E/F be a field extension and let β ∈ E be algebraic over F .
Let f ∈ F [x] be a monic polynomial which annihilates β. Then f is the minimum
polynomial of β if and only if f is irreducible.

Proof. Let f be the minimum polynomial of β and let g be a monic irreducible
polynomial which annihilates β; it suffices to show that f = g. Now g is a multiple
of f by Proposition 2, so g = af ; but since g is irreducible, so either a or f is
a constant. But f is nonzero and annihilates β, so it is not constant; thus a is
constant. Since f is monic, a is the leading coefficient of g = af . Since g is monic,
a = 1, and f = g. �
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3. Primitive Extensions

Definition 6. Let E/F be a field extension. We say that E/F is a primitive
extension if E = F [β] for some β ∈ F which is algebraic over F . In this case, we
call β a primitive element for E/F .

Proposition 4. Let E/F be a field extension and let β ∈ E. Then

F [β] = {γ ∈ E | γ = g(β) for some g ∈ F [x]}.
Proof. Since F [β] contains F and β and is closed under addition and multiplication,
it must contain g(β) for every g ∈ F [x]. But {g(β) | g ∈ F [x]} is itself a ring, since
it is closed under addition and multiplication. �

Proposition 5. Let E/F be a field extension and let β ∈ F be algebraic over F .
Then

F [β] = {γ ∈ E | γ = g(β) for some g ∈ F [x] with deg(g) < deg(β/F )}.
Proof. In light of the Proposition 4, it suffices to show that for every h ∈ F [x] there
exists g ∈ F [x] with deg(g) < deg(β/F ) such that h(β) = g(β). This will follow
from the division algorithm.

Let f = min(β/F ). Then h = fq+r for some q, r ∈ F [x] where deg(r) < deg(f).
Thus h(β) = f(β)q(β) + r(β) = 0 · q(β) + r(β) = r(β). Set g = r. �

Proposition 6. Let E/F be a field extension and let β ∈ E. Then β is algebraic
over F if and only if F [β] is a field.

Proof. We prove both directions of the implication; clearly, we may assume β 6= 0.
(⇒) Suppose that β is algebraic over F ; it suffices to show that F [β] contains

the inverse of each nonzero element in it.
Let f = min(β/F ), and let γ ∈ F [β] be nonzero; then γ = g(β) for some g ∈ F [x]

with deg(g) < deg(f). Since f is irreducible and deg(g) < deg(f), we must have
gcd(f, g) = 1. By the Euclidean algorithm for polynomials, there exist s, t ∈ F [x]
such that fs + gt = 1. These are polynomials, so we can evaluate them at β to
obtain f(β)s(β) + g(β)t(β) = 1. Since f(β) = 0, this produces g(β)t(β) = 1. Thus
t(β) is the inverse of g(β) = γ.

(⇐) Suppose that F [β] is a field. We know that F [β] = {g(β) | g ∈ F [x]}. Thus,
since β−1 ∈ F [β], then β−1 = g(β) for some g ∈ F [x]. Thus βg(β) − 1 = 0, so
xg(x)− 1 is a polynomial over F which annihilates β. �

Note that this proof in constructive; it tells us how to find the inverse.

Proposition 7. Let E/F be a field extension and let β ∈ F be algebraic over F .
Let d = deg(β/F ). Then B = {1, β, . . . , βn−1} is a basis for F [β] as a vector space
over F . Consequently, [F [β] : F ] = deg(β/F ).

Proof. By Proposition 5, B spans F [β]; thus we only have to show that the set B
is linearly independent. Let a1, . . . , an ∈ F such that

n−1∑
i=0

aiβ
i = 0.

Let g(x) =
∑n−1

i=0 aix
i; now this is a polynomial of degree less that the degree of

β over F which annihilates β, so it is the zero polynomial. Thus ai = 0 for all i,
proving independence. �
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4. Finite Extensions

Definition 7. Let E/F be a field extension. We say that E/F is a finite extension
if E has a finite basis as a vector space over F .

Proposition 8 (Product of Degrees Formula). Let E/F and K/E be finite exten-
sions. Then K/F is a finite extension, and

[K : F ] = [K : E][E : F ].

Proof. Let {u1, . . . , um} be a basis for E/F and let {v1, . . . , vn} be a basis for K/E.
Set

B = {uivj | i = 1, . . . ,m and j = 1, . . . , n};
we claim that B is a basis for K/F .

Let x ∈ K. Then there exist a1, . . . , an ∈ E such that x = a1v1 + · · ·+anvn. But
for j = 1, . . . , n there exist b1,j , . . . , bm,j ∈ F such that ai = b1,iu1 + · · ·+ bm,ium,
so that x =

∑
j

∑
i bi,juivj . Thus B spans K/F , and K/F is finite.

Now suppose that
∑

i,j bi,juivj = 0. By the linear independence of the vj ’s, we
have that

∑
i bi,jui = 0 for j = 1, . . . , n, and so by the linear independence of the

ui’s, each bi,j = 0. Thus B is linearly independent and is therefore a basis. Since
|B| = mn, K/F has dimension mn, so [K : F ] = [K : E][E : F ]. �

Proposition 9 (Product of Degrees Inequality). Let E/F be a field extension and
let β1, . . . , βn ∈ E be algebraic over F . Let L = F [β1, . . . , βn]. Then L/F is finite,
and

[L : F ] ≤
n∏

i=1

[F [βi] : F ].

Proof. Let K = F [β1, . . . , βn−1]; by induction, we assume that

[K : F ] ≤
n−1∏
i=1

[F [βi] : F ].

Let f be the minimum polynomial of βn over F . Then the coefficients of βn are in
K, so view f ∈ K[X]. Since f(βn) = 0, βn is algebraic over K, and the minimum
polynomial of βn over K is a factor of f . In particular, the degree of this minimum
polynomial is less than or equal to deg(f) = [F [βn] : F ]. Thus

[L : F ] = [K[βn] : K][K : F ] ≤ [F [βn] : F ]
n−1∏
i=1

[F [βi] : F ] =
n∏

i=1

[F [βi] : F ].

�
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5. Algebraic Extensions

Definition 8. Let E/F be a field extension. We say that E/F is an algebraic
extension if every element of E is algebraic over F .

Proposition 10. Let E/F be a finite extension.
Then E/F is an algebraic extension.

Proof. Let β ∈ E; we wish to show that β is algebraic over F .
Since E/F is finite, it has a finite dimension, say [E : F ] = n. Then any set

of n + 1 elements of E is linearly dependent over F . Thus the set {1, β, . . . , βn}
is linearly dependent over F , so there exists a nontrivial dependence relation from
this set. That is, there exist a0, a1, . . . , an ∈ F , not all zero, such that

n∑
i=0

aiβ
i = 0.

If we set f(x) =
∑n

i=0 aix
i, we obtain a nonzero polynomial in F [x] which annihi-

lates β. Thus, β is algebraic over F . �

We are now ready to prove §1.5 Theorem 8 from Hadlock without matrix com-
putations, determinants, and the theory of eigenvalues.

Proposition 11. Let E/F be a field extension and let α, β ∈ E be nonzero and
algebraic over F . Then α+ β, αβ, −β, and β−1 are algebraic over F .

Proof. Let L = F [α, β]. By Proposition 9, [L : F ] ≤ [F [α] : F ][F [β] : F ] < ∞,
so L/F is a finite extension. By Proposition 10, L/F is an algebraic extension, so
every element of L is algebraic over F . Clearly α+ β ∈ L and αβ ∈ L, so they are
algebraic over F . Moreover, since β is algebraic over F , F [β] is a field, and F [β]/F
is a finite extension, and therefore is an algebraic extension. Since −β and β−1 are
in F [β], they are algebraic over F . �

Corollary 1. Let A = {z ∈ C | z is algebraic over Q}. Then A is a subfield of C.
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6. Splitting Extensions

Definition 9. Let E/F be a field extension and let f ∈ F [x].
We say that f splits over E if f is a product of linear factors in E[x].
We say that E/F is a splitting extension, or that E is a splitting field for f over

F , if f splits over E and E is generated over F by the roots of f . That is,
(a) f(x) =

∏n
i=1 c(x− αi) for some c ∈ F and α1, . . . , αn ∈ E, and

(b) E = F [α1, . . . , αn].

The first key fact about splitting extensions is that they exist. This is typically
shown using the ring theoretical concept of ideals, but in this case, the proof boils
down to the following construction.

Proposition 12. Let F be a field and let f ∈ F [x]. Then there exists a field E
containing F and an element β ∈ E such that f(β) = 0.

Proof. Without loss of generality, f is irreducible over F . Define an equivalence
relation on F [x] by

g ≡ h ⇔ f | (g − h);
that is, two polynomials are equivalent if and only if their difference is divisible by
f . For g ∈ F [x], the equivalence class of g is

g = {h ∈ F [x] | g ≡ h}.
Let E = {g | g ∈ F [x]}. Distinct constant polynomials (elements of F ) are not
equivalent to each other; identify F with the set of equivalence classes of constant
polynomials, so that a ∈ F implies a = a, and E contains F .

Define addition and multiplication on E by g + h = g + h, and gh = gh. Using
the fact that f divides g− h, one may show that these operations are well-defined,
and in fact, E together with these operations is a field.

Note that if g ∈ F [x], divide g by f to obtain g = fq + r, where q, r ∈ F [x] and
deg(r) < deg(f). Then g = r. In particular, f = 0.

We now have a field E which contains the field F , and E/F is a field extension.
So, if g ∈ F [x], we may evaluate g at an element h ∈ E, and obtain some other
element in E which is, in fact, the equivalence class of the composition g ◦ h.

Consider the polynomial g(x) = x; let x denote its equivalence class. Set β = x,
and consider what happens when we evaluate the polynomial f at the element β.
Let f(x) =

∑n
i=0 aix

i with coefficients ai ∈ F ; now ai = ai, so

f(β) = f(x) =
n∑

i=0

aix
i =

n∑
i=0

aixi =
n∑

i=0

aixi = f = 0.

Thus β is a root of f in E. �

Proposition 13. Let F be a field and let f ∈ F [x]. Then there exists a field E
which is a splitting field of f over F .

Proof. By induction, we may assume that splitting fields exist for polynomials of
degree less than that of f . Apply the above proposition to obtain a field K which
contains a root β of f . Let h ∈ K[x] be given by h(x) = x − β. Now f, h ∈ K[x],
and h divides f , so f = hq for some q ∈ K[x]. Since deg(q) < deg(f), there exists
a field E which is a splitting field of q over K. Clearly, E is a splitting field of f
over F . �
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7. Multiple Roots

We wish to show that if E/F is a field extension and α, β ∈ E are algebraic
over F , then there exists γ ∈ F which is algebraic over F such that F [α, β] = F [γ].
Unfortunately, this is not true in complete generality; it is, however, true if E is a
subfield of C. There are two properties of C which we need for the proof. The first is
that any subfield of C is infinite, and the second is that irreducible polynomials over
C do not have multiple roots; this leads to the abstract definition of separability.
We now outline the proof of this fact; the astute reader will ask where the fact that
the coefficients are complex numbers is being used.

Definition 10. Let E/F be an algebraic field extension.
Let f ∈ F [x] and let β ∈ E. We say that β is a multiple root of f if (x− β)2 is

a factor of f over F [β].

A polynomial is said to have distinct roots if it does not have multiple roots.
To prove that polynomials over subfields of C have no multiple roots, we use the
derivative of the polynomial. Note that, for polynomials, the derivative may be
defined in a completely formal (algebraic) way.

Definition 11. Let f ∈ C[x]. If f(x) =
∑n

i=0 aix
i, where ai ∈ F , define the

derivative of f is the polynomial f ′ ∈ C[x] given by f ′(x) =
∑n−1

i=0 (i+ 1)ai+1x
i.

Proposition 14 (Product Rule). Let f, g ∈ C[x]. Then (fg)′ = fg′ + f ′g.

Proof. Assign coefficients to f and g, compute the product and take the derivative
to obtain (fg)′. Then compute fg′ + f ′g, and compare coefficients. �

Proposition 15. Let f ∈ C[x], and let r1, . . . , rn be the (not necessarily distinct)
roots of f , so that f(x) =

∏n
i=1(x− ri). Then

f ′(x) =
n∑

i=1

∏
j 6=i

(x− rj).

Proof. This follows from the product rule and induction. �

Proposition 16. Let f ∈ C[x], and let β ∈ C with f(β) = 0. Then β is a multiple
root of f if and only if f ′(β) = 0.

Proof. Let r1, . . . , rn be the (not necessarily distinct) roots of f ; we have

f ′(x) =
n∑

i=1

∏
j 6=i

(x− rj).

Since β is a root of f , β = rk for some k. Then β is a root of
∏
j 6= i(x − rj), so

long as i 6= k. Thus β is a root of f ′ if and only if β is a root of
∏

j 6=k(x− rj), and
this happens only if β = rj for some j 6= k, in which case β is a multiple root, since
β = rj and β = rk. �

Proposition 17. Let f ∈ C[x] be irreducible over a subfield F ⊂ C. Then f has
no multiple roots.

Proof. Without loss of generality, f is monic. Let β be a root of f . Since f is
irreducible, it is the minimum polynomial of β. Thus no nonzero polynomial of
lower degree annihilates β. Thus, β is not a root of f ′(x), so β is not a multiple
root of f . �
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8. Separable Extensions

Definition 12. Let E/F be an algebraic field extension.
If f ∈ F [x], we say that f is separable if f has deg(f) distinct roots in a splitting

field for f over F .
We say that E/F is separable if for every β ∈ E, the minimum polynomial of β

over F is separable.

Proposition 18. Let E/F be a finite separable extension. Let α, β ∈ E be algebraic
over F . Then there exists γ ∈ E which is algebraic over F such that

F [γ] = F [α, β].

Proof. Assume that F is infinite; the proof for the finite case is handled separately,
and we will not discuss this here.

Let f = min(α/F ) and g = min(β/F ). Let r = deg(f) and s = deg(g). Let
K/F be a splitting extension for fg; clearly, K contains splitting fields for f and
g over F . Since E/F is separable, f and g have distinct roots in K. Let a1, . . . , ar

be the distinct roots of f in K, and let b1, . . . , bs be the distinct roots of g in K.
Consider the polynomial

p(x) =
r∏

i=1

s∏
j=1

[
(aix+ bj)− (αx+ β)

]
.

This is a polynomial of degree rs so it has at most rs roots in F . Since F is infinite,
there exists c ∈ F such that p(c) 6= 0.

Define γ = αc+β; we will show that γ is a primitive element for F [α, β] over F .
Certainly γ ∈ F [α, β], so F [γ] ⊂ F [α, β]. If we show that α ∈ F [γ], then β = γ−αc
will also be in F [γ], so then F [α, β] ⊂ F [γ]. Thus it remains to show that α ∈ F [γ].

Let h(x) = g(γ − cx); this is a polynomial over F [γ]. Also, f(x) is a polynomial
over F [γ], so gcd(f, h) is a polynomial of F [γ]. We note that h(α) = g(γ − cα) =
g(β) = 0; therefore α is a common root of f and h, and (x − α) is a factor of
gcd(f, h). If gcd(f, h) has another factor, then it has another linear factor over K;
any other linear factor of gcd(f, h) must be of the form (x − a), where a is a root
of f .

Since α is not a multiple root of f , the remaining linear factors of f are of
the form (x − ai), where ai 6= α. But if (x − ai) is a factor of gcd(f, h), then
(x − ai) also divides h(x), so ai is a root of h. Suppose this is the case; then
0 = h(ai) = g(γ − cai), so γ − cai = bj for some j. Therefore aic+ bj − γ = 0, that
is, (aic+ bj)− (αc+ β) = 0. In this case, c is a root of p(x), a contradiction.

Therefore, gcd(f, h) = (x− α) is a polynomial over F [γ], whence α ∈ F [γ]. �

Theorem 1 (Primitive Element Theorem). Let E/F be a finite separable extension.
Then there exists γ ∈ E such that E = F [γ].

Proof. We may assume that E is larger than F . By induction on the degree [E : F ],
we may also assume that every proper subfield of E which contains F has a primitive
element over F . Thus let K be a maximal proper subfield of E which contains F ;
then K = F [α] for some α ∈ K. Let β ∈ E r F ; then E = K[β], for otherwise,
K would not be maximal among proper subfields. Thus E = F [α, β]. Now by the
Primitive Element Theorem, there exists γ ∈ E such that F [γ] = F [α, β]. �
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9. Ring Homomorphisms

Definition 13. A ring homomorphism is a function φ : R → S, where R and S
are rings, which satisfies:
(H0) φ(1R) = 1S ;
(H1) φ(a+ b) = φ(a) + φ(b);
(H2) φ(ab) = φ(a)φ(b).

Example 1. Let n ∈ Z, n ≥ 2. Then Z and Zn are rings, and let ξ = ξn be the
residue map

ξ : Z → Zn given by a 7→ a,

where a is the remainder when a is divided by n. Then ξ is a ring homomorphism.

Example 2. Consider the function

φ : C → C given by z 7→= z,

where z is the complex conjugate of z. Then φ is a ring homomorphism.

Proposition 19 (Properties of Ring Homomorphisms). Let φ : R → S be a ring
homomorphism. Then

(a) φ(0R) = 0S;
(b) φ(−a) = −φ(a) for all a ∈ R;
(c) if a ∈ R is invertible, then so is φ(a), and φ(a−1) = φ(a)−1.

Proof. Note that
φ(0R) = φ(0R + 0R) = φ(0R) + φ(0R).

Thus φ(0R)+φ(0R) = 0S +φ(0R), and by the cancellation law of addition, φ(0R) =
0S .

Now for a ∈ R,

φ(a) + φ(−a) = φ(a− a) = φ(0R) = 0S ,

which shows that φ(−a) is an additive inverse of φ(a); by uniqueness of inverses,
φ(−a) = −φ(a).

Suppose that a ∈ R is invertible. Then

φ(a)φ(a−1) = φ(aa−1) = φ(1R) = 1S ,

which shows that the inverse of φ(a) is φ(a−1). �

Proposition 20. Let φ : R → S and ψ : S → T be ring homomorphisms. Then
ψ ◦ φ : R→ T is a ring homomorphism.

Proof. Let a, b ∈ R. Then

(ψ◦φ)(a+b) = ψ(φ(a+b)) = ψ(φ(a)+φ(b)) = ψ(φ(a))+ψ(φ(b)) = (ψ◦φ)(a)+(ψ◦φ)(b),

and

(ψ ◦ φ)(ab) = ψ(φ(ab)) = ψ(φ(a)φ(b)) = ψ(φ(a))ψ(φ(b)) = (ψ ◦ φ)(a)(ψ ◦ φ)(b).

�
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Proposition 21. Let φ : R→ S be a ring homomorphism. Then

φ(R) = {s ∈ S | s = φ(r) for some r ∈ R}
is a subring of S.

Proof. We verify the properties of a subring.
(S0) Since φ(1R) = 1S , we have 1S ∈ φ(R).
(S1) and (S2) Let r, s ∈ φ(R). Then r = φ(a) and s = φ(b) for some a, b ∈ R.

Now a+ b, ab ∈ R, so φ(a+ b), φ(ab) ∈ φ(R). But φ(a+ b) = φ(a) + φ(b) = r + s,
and φ(ab) = φ(a)φ(b) = rs. �

Proposition 22. Let E/F be a field extension, and let β ∈ E. Define a function

ε : F [x] → E given by f 7→ f(β).

Then ε is a ring homomorphism, called the evaluation map, whose image is F [β].

Proof. The definition of polynomial addition in F [x] we gave is that f + g is the
unique function from F to itself which satisfies (f + g)(x) = f(x) + g(x) for every
x ∈ F . Thus, ε(f + g) = (f + g)(β) = f(β) + g(β) = ε(f) + ε(g). This is equally
true for multiplication. The constant polynomial 1 is mapped to 1 evaluated at β,
which is still 1. Thus ε is a ring homomorphism.

We have previously seen that F [β] = {g(β) | g ∈ F [x]}, which is clearly the
image of ε. �

Definition 14. Let φ : R→ S be a ring homomorphism.
We say that φ is a monomorphism if φ is injective.
We say that φ is an epimorphism if φ is surjective.
We say that φ is an isomorphism if φ is bijective.
We say that φ is an endomorphism if S = R.
We say that φ is an automorphism if φ is bijective and S = R.

Proposition 23. The composition of monomorphisms, epimorphisms, isomor-
phisms, endomorphisms, or automorphisms is again a monomorphism, epimor-
phism, isomorphism, endomorphism, or automorphism, respectively.

Proof. The composition of injective functions is injective, the composition of sur-
jective functions is surjective, the composition of functions from a set into itself is
again a function from the set into itself. Finally, the composition of homomorphisms
is a homomorphism. �

Proposition 24. Let φ : R→ S be a ring isomorphism. Then φ is invertible, and
if ψ : S → R is its inverse, then ψ is a ring isomorphism.

Proof. Since φ bijective, it is invertible; let ψ denote its inverse. The inverse of
a bijective function is bijective, so ψ is bijective. We wish to show that ψ is a
homomorphism.

Let r, s ∈ S. Since ψ is bijective, it is surjective, so there exist a, b ∈ R such that
φ(a) = r and φ(b) = s. Then ψ(r + s) = ψ(φ(a) + φ(b)) = ψ(φ(a + b)) = a + b =
ψ(r) + ψ(s), and ψ(rs) = ψ(φ(a)φ(b)) = ψ(φ(ab)) = ab = ψ(r)ψ(s). �
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10. Field Homomorphisms

Proposition 25. Let φ : F → S be a ring homomorphism. If F is a field, then φ
is injective.

Proof. Let x1, x2 ∈ F , and suppose that φ(x1) = φ(x2). Then φ(x1 − x2) = 0S ,
and since 0S is not invertible, it must be the case that x1 − x2 is not invertible.
The only noninvertible element in F is 0F , so x1 − x2 = 0F ; thus x1 = x2. Thus φ
is injective. �

Definition 15. Let F , K, and L be fields such that F ⊂ K ∩L, and let φ : K → L
be a homomorphism. We say that φ fixes F if φ(a) = a for every a ∈ F .

Proposition 26. Let K/F and L/F be field extensions, and let φ : K → L be
a homomorphism which fixes F . Let f ∈ F [x] and β ∈ K. Then f(β) ∈ K,
f(φ(β)) ∈ L, and

f(φ(β)) = φ(f(β)).

Proof. Let f(x) =
∑n

i=0 aix
i. Then

f(φ(β)) =
n∑

i=0

ai(φ(β))i =
n∑

i=0

aiφ(βi) =
n∑

i=0

φ(aiβ
i) = φ

( n∑
i=0

aiβ
i
)

= φ(f(β)).

�

Definition 16. Let E/F be a field extension and let α, β ∈ E be algebraic over
F . We say that α and β are conjugate over F if α and β have the same minimum
polynomial over F .

Proposition 27. Let E/F be a field extension with α, β ∈ E conjugate over F . If
α ∈ F [β], then F [α] = F [β].

Proof. Clearly F [α] ⊂ F [β]. But since α and β have the same minimum polynomial,
[F [α] : F ] = [F [β] : F ]. Thus [F [β] : F [α]] = 1, which says that F [α] = F [β]. �

Proposition 28. Let E/F and K/F be field extensions, and let β ∈ E be algebraic.
If φ : E → K is a field homomorphism which fixes F , then β and φ(β) are conjugate
over F .

Proof. Let f be the minimum polynomial of β over F . We have f(φ(β)) =
φ(f(β)) = φ(0) = 0; thus f annihilates φ(β), and since f is monic and irreducible,
it is the minimum polynomial of φ(β). �
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Proposition 29. Let E/F be a field extension and let α, β ∈ E be conjugates over
F . Then there exists a unique isomorphism

φ : F [α] → F [β] such that φ fixes F and φ(α) = β.

Proof. Every element of F [α] is of the form g(α) for some g ∈ F [x]. Define φ by
φ(g(α)) = g(β). Since there are many polynomials whose value at α are equal, we
wish to show that this is well-defined; that is, for γ ∈ F [α], that the value of φ(γ)
does not depend on the polynomial g selected with g(β) = γ. It is here that we
need α and β to have the same minimum polynomial.

Let f ∈ F [x] be the minimum polynomial of α and β, and let g, h ∈ F [x] such
that g(β) = h(β). We wish to show that g(β) = h(β). We have g(α) − h(α) = 0,
so (g − h)(α) = 0, so g − h annihilates α. Thus f divides g − h, so g − h = fr
for some polynomial r ∈ F [x] with deg(r) < deg(f). Thus g = h + fr, so g(β) =
h(β) + f(β)r(β) = h(β). This completes the proof that φ is well-defined.

The elements of F are contained in F [α] and F [β] as the constant polynomials
evaluated at α and β, respectively. But evaluating a constant polynomial gives the
constant, whether we plug in α or β; thus if a ∈ F , then g(x) = a is a constant
polynomial, so g(α) = a, and φ(a) = g(β) = a.

Let g(α) and h(α) be arbitrary members of F [α]. Now it is obvious that φ is a
homomorphism, since
(H0) φ(1) = 1;
(H1) φ(g(α) + h(α)) = φ((g + h)(α)) = (g + h)(β) = g(β) + h(β)

= φ(g(α)) + φ(h(α));
(H2) φ(g(α)h(α)) = φ((gh)(α)) = (gh)(β) = g(β)h(β) = φ(g(α))φ(h(α)).
Finally, if φ fixes F and φ(α) = β, then necessarily φ(g(α)) = g(φ(α)) = g(β);

thus the homomorphism constructed above is the only possible one with the desired
properties, and is therefore unique. �

Proposition 30. Let E/F be an algebraic extension, and let φ : E → E be a
homomorphism which fixes F . Then φ is an automorphism.

Proof. By hypothesis, φ is an endomorphism, and since E is a field, φ is injective.
Thus we show that E is surjective.

Let β ∈ E; it suffices to show that β = φ(α) for some α ∈ E. Since E/F is
algebraic, β is algebraic over F . Let A denote the set of conjugates of β in E. Since
φ sends conjugates to conjugates, φ(A) = A. Since φ is injective, the restriction
of φ to A is injective. An injective function from a finite set to itself is necessarily
surjective, so φ restricted to A is surjective. Since β ∈ A, β = φ(α) for some
α ∈ A ⊂ E. Therefore, φ is surjective on E. �



13

11. Field Automorphisms

Definition 17. Let E/F be a field extension. An automorphism of E/F , or an
automorphism of E over F , is an automorphism of E which fixes F .

The set of all automorphisms of E is denoted Aut(E). The set of all automor-
phisms of E/F is denoted Aut(E/F ).

Since the composition of automorphisms is an automorphism, the set Aut(E)
is closed under composition of functions. Clearly Aut(E/F ) ⊂ Aut(E); moreover,
since the composition of functions fixing F also fixes F , we see that Aut(E/F ) is
also closed under composition of functions.

Suppose that E/F is an algebraic extension; then every element of E is algebraic
over F . If φ ∈ Aut(E/F ) and α, β ∈ E with φ(α) = β, then α and β have the same
minimum polynomial; we have seen this. This greatly limits what can and cannot
be an automorphism of an algebraic field extension, and puts a specific bound on
the size of Aut(E/F ).

Proposition 31. Let E = F [β], and let m be the number of conjugates of β in E.
Then |Aut(E/F )| = m. Hence |Aut(E/F )| ≤ [E : F ].

Proof. For each conjugate of β in E, there exists a unique automorphism of E
which fixes F and sends β to this conjugate. Since every automorphism sends β to
a conjugate, the number of automorphisms is equal to the number of conjugates m
of β in E.

Let f be the minimum polynomial of β over F . The conjugates of β are zeros
of this polynomial, which must be less than or equal to its degree; since [E : F ] =
deg(f), we have |Aut(E/F )| = m ≤ deg(f) = [E : F ]. �

Proposition 32. Let E/F be a finite separable extension.
Then Aut(E/F ) ≤ [E : F ].

Proof. Since E/F is finite and separable, the primitive element theorem dictates
that E/F has a primitive element. Thus E = F [β] for some β ∈ E. The result
follows. �

Proposition 33. Let K/F be an field extension, and let E be a subfield of K
containing F such that E/F is a splitting extension. If φ is an automorphism of
K which fixes F , then φ(E) = E.

Proof. Let f ∈ F [x] such that E is a splitting field of f over F , and let α1, . . . , αn

be the roots of f in E. Every element of E is a linear combination over F of powers
of the roots of f .

Let β ∈ E; then β =
∑m

i=1 aiα
ki
ji

for some ai ∈ F , ji between 1 and n, and ki ∈ Z.
Since φ is an automorphism which fixes F , we have φ(β) =

∑m
i=1 aiφ(αji)

ki , and
since αj ∈ E for all j, so is φ(β).

In other words, φ fixes F and permutes the roots of f ; moreover, E is generated
by these roots, so

φ(E) = φ(F [α1, . . . , αn]) = F [φ(α1), . . . , φ(αn)] = F [α1, . . . , αn] = E.

�
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12. Normal Extensions

Definition 18. Let E/F be a field extension.
We say that E/F is normal if every polynomial over F which has a root in E

splits over E.

Proposition 34. Let K/F be an field extension, and let E be a subfield of K
containing F such that E/F is normal and algebraic. If φ ∈ Aut(K/F ), then
φ(E) = E.

Proof. Let α ∈ E. Then α is algebraic over F , so α is the root of a polynomial
f ∈ F [x]. Since E/F is normal, f splits in E so all of the conjugates of α are in E.
But φ(α) must be a conjugate of α, so φ(a) ∈ E. This shows that φ(E) ⊂ E.

Let β ∈ φ(E). Then β = φ(α) for some α ∈ E. Then α is a conjugate of β, and
α ∈ E, so β ∈ E. This shows that φ(E) ⊂ E. �

Proposition 35. Let E/F be a finite, normal, and separable extension. Then E
is the splitting field for an irreducible polynomial over F of degree [E : F ].

Proof. Since E/F is finite and separable, there exists β ∈ E such that E = F [β].
Let f be the minimum polynomial of β over F ; then [E : F ] = deg(f). Since E/F
is normal, f splits over E, so all of the roots of f are in E. Since E is generated
over F one of these roots, it is certainly generated over F by all of the roots; thus
E is a splitting field for f over F . �

Proposition 36. Let E/F be a finite, separable extension. The following condi-
tions are equivalent:

(i) E is a splitting field of an irreducible polynomial over F of degree [E : F ];
(ii) |Aut(E/F )| = [E : F ].

Proof. (i) ⇒ (ii) Suppose that E is a splitting field of an irreducible polynomial
f over F of degree [E : F ]. If β is a root of f in E, then F [β] ⊂ E, but also
[F [β] : F ] = deg(f) = [E : F ]. Therefore E = F [β].

Now f splits over E, so all of the roots of f are in E. Since E/F is separable, f
has distinct roots, so there are deg(f) = [E : F ] roots of f in E.

Given two roots β1, β2 ∈ E, there is a unique isomorphism which maps F [β1]
onto F [β2] by fixing F and sending β1 to β2. Since F [β1] = F [β2] = E, each of
these isomorphisms is an automorphism of E; moreover, these are the only possible
automorphisms of E. Thus |Aut(E/F )| = [E : F ].

(ii) ⇒ (i) Suppose |Aut(E/F )| = [E : F ]. Since E/F is finite and separable,
there exists β ∈ E such that E = F [β].

The number of automorphisms of E/F equals the number of roots of f in E,
which is [E : F ] = deg(f). Thus all of the roots of f are in E, so E contains a
splitting field for f over F . Since E is generated by one of the roots of f , we see
that E is a splitting field for f over F . �
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13. Extending Isomorphisms

We wish to show that splitting extensions are normal; we do this by showing
that the unique isomorphism between primitive extensions of conjugates extends
to an automorphism of the splitting extension. We begin with a technical lemma
which serves as the induction step of the main argument.

Proposition 37. Let F be a field and let φ : F → F̂ be an isomorphism. For
g ∈ F [x] given by g(x) =

∑m
i=0 bix

i, define ĝ ∈ F̂ [x] by ĝ(x) =
∑m

i=0 φ(bi)xi.
Let E/F be an field extension and let β ∈ E be algebraic over F with minimum

polynomial

f(x) =
n∑

i=0

aix
i,

where ai ∈ F so that f ∈ F [x].
Let Ê be a field containing F̂ such that there exists β̂ ∈ Ê with f̂(β̂) = 0.
Then there exists a unique isomorphism φ̂ : F [β] → F̂ [β̂] such that φ̂(a) = φ(a)

for a ∈ F , and φ̂(β) = β̂.

Proof. The argument is analogous to that of Proposition 29; we give an outline.
It is clear that for g, h ∈ F [x], ĝh = ĝĥ, and since f is irreducible, f̂ is irreducible.

Moreover, f̂(β̂) = 0. Thus f̂ is the minimum polynomial of β̂ over F̂ .
Each element of F [β] is of the form g(β) for some polynomial g ∈ F [x]. Define

φ̂ : F [β] → F̂ [β̂] by g(β) 7→ ĝ(β̂). This is well-defined, because g(β) = h(β) implies
the g − h is divisible by f , so ĝ − h is divisible by f̂ , so ĝ(β̂) = ĥ(β̂). Moreover,
this is an isomorphism of fields. �

Proposition 38. Let E/F be a separable splitting extension. Let E1, E2 be subfields
of E which contain F , and let φ : E1 → E2 be an isomorphism which fixes F . Then
there exists a φ̂ ∈ Aut(E/F ) such that φ̂(α) = φ(α) for every β ∈ E1.

Proof. Let g ∈ F [x] such that f splits in E and E is generated over F by the roots
over g. If all of the roots of g are in E1, then E1 = E, and φ maps E into E. Since
φ is injective, it is surjective on the finitely many roots of g, and thus φ(E) = E;
that is, φ is already an automorphism.

Otherwise, select a root β of g such that β /∈ E1. Let f be the minimum
polynomial of β over E1. Let f̂ be the polynomial obtained from f by applying φ
is the coefficients of f , as in the previous proposition. The roots of f̂ are also roots
of g (why?), and g splits over E, so there is a root β̂ of f̂ in E. Thus there exists
an isomorphism which sends E1[β] to E2[β̂].

Continue in this way until all of the roots of g are being mapped; one arrives at
an automorphism φ̂ which extends φ. �
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Proposition 39. Let E/F be a separable splitting extension of a polynomial f ∈
F [x]. Let β, β̂ ∈ E be conjugate over F . Then there exists φ̂ ∈ Aut(E/F ) such that
φ̂(β) = β̂.

Proof. Apply Proposition with E1 = F [β], E2 = F [β̂], and β̂ : E1 → E2 the unique
isomorphism which fixes F and maps β to β̂. �

Proposition 40. Let K/F be a normal extension and let E ⊂ K be a splitting
field of an irreducible polynomial over F . Then E/F is normal.

Proof. Since E/F is a splitting extension, Proposition 33 tells us that every auto-
morphism of K restricts to an automorphism of E

Let f ∈ F [x] be a polynomial with a root, say β, in E. Now f splits in K;
let β̂ be a root of f in K. There exists φ ∈ Aut(E/F ) such that φ(β) = β̂. But
φ(E) = E, so β̂ ∈ E. Thus f splits in E, so E/F is normal. �

Proposition 41. Let E/F be a finite separable extension. The following conditions
are equivalent:

(i) E/F is normal
(ii) E is a splitting field of a polynomial over F
(iii) |Aut(E/F )| = [E : F ].

Proof. Since E/F is finite and separable, there exists β ∈ E such that E = F [β].
Let f ∈ F [x] be the minimum polynomial of β over F . Then [E : F ] = deg(f). We
prove (ii) ⇒ (i) ⇒ (iii).

(ii)⇒ (i) Suppose that E is a splitting field of a polynomial over F . Let g ∈ F [x]
be a polynomial with a root in E. By Proposition 40, E contains a splitting field
for g over F . Thus all of the roots of g are in E, so E/F is normal.

(i) ⇒ (iii) Suppose that E/F is normal. Then f splits over E, so all of the
roots of f are in E. Since E/F is separable, f has distinct roots, so there are
deg(f) = [E : F ] roots of f in E. For each of these roots β′, there is a unique
isomorphism which sends F [β] to F [β′]. Since F [β′] = E, this isomorphism is
an automorphism of E, giving [E : F ] distinct automorphisms of E/F . Thus
|Aut(E/F )| = [E : F ].

(iii) ⇒ (ii) Suppose |Aut(E/F )| = [E : F ]. The number of automorphisms of
E/F equals the number of roots of f in E, which is [E : F ] = deg(f). Thus all
of the roots of f are in E, so E contains a splitting field for f over F . Since E
is generated by one of the roots of f , we see that E is a splitting field for f over
F . �
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14. Groups of Automorphisms

Let E be a field, and let ε : E → E denote the identity function from E to itself.
This is an automorphism of E. If φ, ψ ∈ Aut(E), let φψ denote the composition of
φ and ψ, and let φ−1 denote the inverse function. For example, φ−1φ = ε.

If n is a positive integer, then φn means φ composed with itself n times. Also
φ0 = ε and φ−n = (φ−1)n.

Definition 19. Let E be a field and let G ⊂ Aut(E). We say that G is a group of
automorphisms of E, if

(a) ε ∈ G;
(b) φ, ψ ∈ G implies φψ ∈ G;
(c) φ ∈ G implies φ−1 ∈ G.

If G is nonempty and finite, the first and third conditions are superfluous. To
see this, let φ ∈ G. Note that since G is finite, if we keep taking powers of φ, we
will eventually repeat; φn = φm for some m < n. Then φn−m = φnφ−m = ε, so
ε ∈ G, and condition (a) is extraneous. If k is the smallest positive integer such
that φk = ε, then φk−1 = φ−1, so condition (c) is extraneous.

Definition 20. Let E be a field and let G be a group of automorphisms of E. A
subgroup of G is a subset H ⊂ G which is itself a group of automorphisms.

Note that Aut(E) is itself a group of automorphisms of E, and all other groups
of automorphisms of E are subgroups of Aut(E).

If H is nonempty and finite, to see that H is a subgroup of G, it suffices to check
that H is closed under composition.

Definition 21. Let E be a field, and let φ ∈ Aut(E). The fixed field of φ is

Fix(φ) = {a ∈ E | φ(a) = a}.

Proposition 42. Let E be a field, and let φ ∈ Aut(E). Then Fix(φ) is a subfield
of E.

Proof. Since Fix(φ) is a subset of E by definition, it suffices to check that Fix(φ) is
closed under addition, multiplication, additive inverses, and multiplicative inverses.
If a, b ∈ Fix(φ), then φ(a + b) = φ(a) + φ(b) = a + b, so a + b is fixed, and
a + b ∈ Fix(φ); similarly, ab is fixed. Also φ(−a) = −φ(a) = −a, so −a ∈ Fix(φ);
similarly, a−1 is fixed when a 6= 0. Thus Fix(φ) is a field. �

Definition 22. Let E be a field, and let G be a group of automorphisms of E.
The fixed field of G is

Fix(G) = {a ∈ E | φ(a) = a for all φ ∈ G}.

Proposition 43. Let E be a field, and let G be a group of automorphisms of E.
Then

Fix(G) = ∩φ∈GFix(φ),
and Fix(G) is a subfield of E.

Proof. Clearly, Fix(G) = ∩φ∈GFix(φ). Since the intersection of fields is a field,
Fix(G) is a field. �
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Proposition 44. Let E be a field with subfields F and K. Let H,G be subgroups
of Aut(E). Then

(a) F ⊂ K ⇒ Aut(E/F ) ⊃ Aut(E/K);
(b) H ⊂ G⇒ Fix(H) ⊃ Fix(G);
(c) Aut(E/Fix(G)) ⊃ G;
(d) Fix(Aut(E/F )) ⊃ F .

Proof. Each of these is easy.
(a) Suppose F ⊂ K and let φ ∈ Aut(E/K). Then φ fixes K, so φ fixes F , so

φ ∈ Aut(E/F ).
(b) Suppose H ⊂ G, and let a ∈ Fix(G). If φ ∈ H, then φ ∈ G, so φ(a) = a;

thus H fixes a, so a ∈ Fix(H).
(c) Let φ ∈ G; then φ is an automorphism of E which fixes Fix(G). Thus

φ ∈ Aut(E/Fix(G)).
(d) Let a ∈ F and let φ ∈ Aut(E/F ). Then φ fixes F , so φ(a) = a. Thus

a ∈ Fix(Aut(E/F )). �

15. Galois Extensions

Definition 23. Let E/F be a field extension. We say that E/F is Galois if it is
finite, normal, and separable.

Proposition 45. Let F ≤ E ≤ K be fields, with K/F algebraic. If K/F is Galois,
then so is K/E.

Proof. Since K/F is finite, normal, and separable, so is K/E. �

Proposition 46 (Artin’s Lemma). Let E be a field and let G ≤ Aut(E) be a finite
group of automorphisms of E. Let F = Fix(G). Then

(a) E/F is a Galois extension;
(b) |G| = [E : F ];
(c) Aut(E/F ) = G.

Proof. Let α ∈ E r F and let A = {φ(α) | φ ∈ G}. Since G is finite, so is A. Let
f(X) =

∏
a∈A(X − a) ∈ E[X]. Then f is a monic polynomial with deg(f) = |A|.

Moreover, the coefficients of f are fixed by the action of G on E, and so they are in
F . Thus E/F is an algebraic extension. Furthermore, deg(f) = [F [α] : F ] ≤ |G|.

The elements of A are distinct roots of the minimum polynomial of α over F ,
so the degree of this minimum polynomial must be greater than or equal to |A| =
deg(f). But f is a monic polynomial over F of which α is a root; moreover, all of
its roots are conjugate, so it must be irreducible. Thus f must be the minimum
polynomial of α over F . Since α was chosen arbitrarily, f is an arbitrary irreducible
monic polynomial over F with a root in E, and all of the roots of f are in E. Thus
E/F is normal. Moreover, f has distinct roots, so E/F is separable.

Suppose that α is an element of E such that [F (α) : F ] is a maximum, and
suppose that [E : F ] > |G|. Then since [F (α) : F ] ≤ |G|, there exists an element
β ∈ E such that β /∈ F (α). Then F (α, β)/F is a separable finite extension, and so
has a primitive element γ. Then [F (γ) : F ] > [F (α) : F ], contradicting our choice
of α. Thus [E : F ] ≤ |G|, so E/F is finite and therefore Galois.

Finally, G is a group of automorphisms of E which fixes F , so G ≤ Aut(E/F ),
and |G| ≤ |Aut(E/F )| ≤ [E : F ]. This proves |G| = [E : F ], and moreover,
|G| = |Aut(E/F )| so G = Aut(E/F ). �
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Theorem 2 (Galois Characterization Theorem). Let E/F be a finite extension.
Then the following conditions are equivalent:

(i) E/F is a Galois extension;
(ii) |Aut(E/F )| = [E : F ];
(iii) Fix(Aut(E/F )) = F .

Proof. We show (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
(i)⇒ (ii) Suppose E/F is Galois. Then E/F is separable and admits a primitive

element α. Each root of the minimum polynomial of α which is and elements
of E gives an automorphism of E/F by sending α to it, and these are the only
automorphisms. Since E/F is separable, there are [E : F ] such roots, and since
E/F is normal, all of them are in E.

(ii) ⇒ (iii) Suppose that |Aut(E/F )| = [E : F ]. Let K = Fix(Aut(E/F )); we
have F ≤ K. Then Aut(E/K) is a group of automorphisms of E which fix K and
therefore fix F , so Aut(E/K) ≤ Aut(E/F ). On the other hand, Aut(E/F ) is a
group of automorphisms of E which fix K by definition of K, we have Aut(E/F ) ≤
Aut(E/K). Thus Aut(E/K) = Aut(E/F ). Now

[E : F ] = |Aut(E/F )| = |Aut(E/K)| ≤ [E : K],

so F ≤ K implies that F = K.
(iii) ⇒ (i) Suppose that Fix(Aut(E/F )) = F . Apply Artin’s Lemma with

G = Aut(E/F ). �

Proposition 47. Let E/F be a Galois extension.
(a) H ≤ Aut(E/F ) ⇒ Aut(E/Fix(H)) = H;
(b) K ≤ E/F ⇒ Fix(Aut(E/K)) = K;

Proof. Part (a) is from Artin’s Lemma. The notation K ≤ E/F means that
F ≤ K ≤ E. Since E/F is Galois, so is E/K. Now (b) follows from the Galois
Characterization Theorem. �
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16. Galois Correspondence

Definition 24. If E/F is a Galois extension, the set of all automorphisms of E
which fix F is denoted Gal(E/F ), and is known as the Galois group of E/F .

This is simply a mnemonic device. If one sees Gal(E/F ), one recalls its fixed
field is F . If one sees Aut(E/F ), one knows that F is a subfield of its fixed field,
but there is a question about whether F is the entire fixed field.

If f ∈ F [x], the Galois group of f over F is Gal(E/F ), where E is a splitting
field of f over F .

The next theorem is essential, but uses some concepts of group theory. If H is a
subgroup of G, the cardianlity of H divides the cardinality of G. The index of H
in G is [G : H] = |G|/|H|. We say that H is a normal subgroup if g−1hg ∈ H for
all h ∈ H and g ∈ G.

Theorem 3 (Galois Correspondence Theorem). Let E/F be a Galois extension
with G = Gal(E/F ). Let F be the set of subfields of E which contain F and let G
be the set of subgroups of G. Then there exists a bijective correspondence

Φ : F → G given by K 7→ Gal(E/K),

with inverse H 7→ Fix(H). Additionally,
(a) H1 ⊂ H2 ⇔ Fix(H1) ⊃ Fix(H2);
(b) |H| = [E : Fix(H)];
(c) [G : H] = [Fix(H) : F ].

Finally, if H ≤ G and K = Fix(H), then H / G if and only if K/F is a normal
extension, in which case Gal(K/F ) ∼= G/H.

Proof. Let K1,K2 ≤ E/F and suppose Φ(K1) = Φ(K2). Then Gal(E/K1) =
Gal(E/K2). Then K1 = Fix(Gal(E/K1)) = Fix(Gal(E/K2)) = K2, so Φ in injec-
tive.

Let H ≤ G. Then Φ(Fix(H)) = Gal(Fix(H)) = H, so Φ in surjective. Thus Φ
is a bijection.

We always have H1 ⊂ H2 ⇒ Fix(H1) ⊃ Fix(H2), and that K1 ⊂ K2 ⇒
Aut(E/K1) ⊃ Aut(E/K2). Now suppose that Fix(H1) ⊃ Fix(H2), and apply
Gal(E/∗), which in this case is the same as Aut(E/∗), to both sides to obtain
H1 = Gal(Fix(H1)) ⊂ Gal(Fix(H2)) = H2. This proves (a).

Since E/Fix(H) is a Galois extension and H = Aut(E/Fix(H)), we have (b).
By Lagrange’s Theorem, we know that |G| = |H|[G : H]. By the dimension

formula, [E : F ] = [E : Fix(H)][Fix(H) : F ]. Since E/F and E/Fix(H) are Galois
extensions, [E : F ] = |G| and [E : Fix(H)] = |H|. Thus [G : H] = [Fix(H) : F ],
proving (c).

As for the a last part, suppose that K/F is a normal extension. Then every
automorphism of E stabilizes K setwise. If φ ∈ G, then φ �K : K → K is an
automorphism of K, which necessarily fixes F and thus is in Gal(K/F ). The
map φ 7→ φ �K is a homomorphism Gal(E/F ) → Gal(K/F ). The kernel of this
homomorphism is Gal(E/K). Thus Gal(E/K) is normal, and Gal(K/F ) ∼= G/H
by the isomorphism theorem.

Suppose that K/F is not a normal extension. Then there exists an automor-
phism φ ∈ Gal(E/F ) which does not stabilize K setwise; thus φ(K) 6= K. Then
Gal(E/φ(K)) = φHφ−1, so φHφ−1 6= H, and H is not normal. �
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17. Fundamental Theorem of Algebra

A p-group is a group whose cardinality is a power of p. A Sylow p-subgroup of a
group G is a maximal subgroup whose cardinality is a power of p. The proof below
uses Sylow 2-subgroups.

Theorem 4 (Fundamental Theorem of Algebra). The field C is algebraically closed.

Proof. Let f(X) = X2 + 1 ∈ R[X]. Let i be a root of f and note that

C = R(i) = {a+ ib | a, b ∈ R}.
Let g(X) ∈ C[X] and let E be the splitting field of g(X) over C. It suffices to show
that E = C.

Since E is a splitting field, it is a Galois extension of C. Thus it is Galois over
R. Let G = Gal(E/R). Let H be a Sylow 2-subgroup of G. Let F = Inv(H).
By comparing degrees, [F : R] has odd degree. By the primitive element theorem,
F = R(α), such that α is the root of an irreducible polynomial over R of odd degree.
But every polynomial of odd degree over R has a root in R, so the only irreducible
polynomials over R are the linear ones. Thus α ∈ R, and F = R. Therefore H = G
is a 2-group, which demands that Gal(E/C) is a 2-group.

If Gal(E/C) is nontrivial, it has a subgroup of index 2, necessary normal, which
corresponds to a Galois subextension K/C of degree 2. This extension has a primi-
tive element β, which is the root of an irreducible quadratic equation over C. But by
the quadratic formula, there are no irreducible quadratic polynomials over C. �

18. Galois Solvability Criterion

A group is cyclic if every element in it is a power of some one element in it.

Definition 25. Let F be a field and let f ∈ F [X]. Let E be a splitting field of f
over F . We say that f is solvable by radicals if there exists a sequence of subfields
of E

F = F0 ≤ F1 ≤ · · · ≤ Fr = E

such that Fi+1 = Fi[αi] for i = 1, . . . , r, where αi is a root of Xni − bi for some
bi ∈ Fi.

Definition 26. Let G be a group. We say that G is solvable if there exists a
sequence of subgroups of G

{1} = G0 ≤ G1 ≤ · · · ≤ Gs = G

such that Gi / G and Gi+1/Gi is cyclic.

Theorem 5. Let F be a field and let f ∈ F [X]. Let E be a splitting field of f over
F . Then f is solvable by radicals if and only if Gal(E/F ) is a solvable group.
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